A Hybrid Collocation Method for Volterra Integral Equations with Weakly Singular Kernels
نویسندگان
چکیده
The commonly used graded piecewise polynomial collocation method for weakly singular Volterra integral equations may cause serious round-off error problems due to its use of extremely nonuniform partitions and the sensitivity of such time-dependent equations to round-off errors. The singularity preserving (nonpolynomial) collocation method is known to have only local convergence. To overcome the shortcoming of these well-known methods, we introduce a hybrid collocation method for solving Volterra integral equations of the second kind with weakly singular kernels. In this hybrid method we combine a singularity preserving (nonpolynomial) collocation method used near the singular point of the derivative of the solution and a graded piecewise polynomial collocation method used for the rest of the domain. We prove the optimal order of global convergence for this method. The convergence analysis of this method is based on a singularity expansion of the exact solution of the equations. We prove that the solutions of such equations can be decomposed into two parts, with one part being a linear combination of some known singular functions which reflect the singularity of the solutions and the other part being a smooth function. A numerical example is presented to demonstrate the effectiveness of the proposed method and to compare it to the graded collocation method.
منابع مشابه
COLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS
In this paper it is shown that the use of uniform meshes leads to optimal convergence rates provided that the analytical solutions of a particular class of Fredholm-Volterra integral equations (FVIEs) are smooth.
متن کاملThe piecewise polynomial collocation method for nonlinear weakly singular Volterra equations
Second-kind Volterra integral equations with weakly singular kernels typically have solutions which are nonsmooth near the initial point of the interval of integration. Using an adaptation of the analysis originally developed for nonlinear weakly singular Fredholm integral equations, we present a complete discussion of the optimal (global and local) order of convergence of piecewise polynomial ...
متن کاملA finite difference method for the smooth solution of linear Volterra integral equations
The present paper proposes a fast numerical method for the linear Volterra integral equations withregular and weakly singular kernels having smooth solutions. This method is based on the approx-imation of the kernel, to simplify the integral operator and then discretization of the simpliedoperator using a forward dierence formula. To analyze and verify the accuracy of the method, weexamine samp...
متن کاملSupergeometric Convergence of Spectral Collocation Methods for Weakly Singular Volterra and Fredholm Integral Equations with Smooth Solutions
A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of functions that satisfy certain regularity conditions on a bounded domain, we obtain geometric or supergeometric convergence rate for both types of equations. Numerical results confirm...
متن کاملDiscretization of Volterra Integral Equations
We show that various (discrete) methods for the approximate solution of Volterra (and Abel) integral equations of the first kind correspond to some discrete version of the method of (recursive) collocation in the space of (continuous) piecewise polynomials. In a collocation method no distinction has to be made between equations with regular or weakly singular kernels; the regularity or nonregul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 41 شماره
صفحات -
تاریخ انتشار 2003